Organic Chemistry II
CHEM 2211

Dr. Xiaodong Michael Shi
MW, 12:30 pm--01:45 pm
Atorvastatin (Lipitor): best selling drug in the world
(> $13 billion per year)
Topic I. Structure and Bonding

• Carbon
 ▪ Group #: 4A
 ▪ Atomic #: 6
 ▪ Element symbol: C
 ▪ Elemental name: carbon
 ▪ Atomic weight: 12.011
 ▪ Electron distribution: 1s\(^2\) 2s\(^2\)2p\(^2\)

• Carbon: the most important element to life!
 ▪ Blood: various minute by minute
 ▪ Bone: 0.8%
 ▪ Tissue: 67%
 ▪ Total amount in body: 16 kg
Topic I. Structure and Bonding

Only carbon forms strong single bond to itself that are stable enough to resist chemical attack under ambient conditions.
Topic I. Structure and Bonding

- **Bonding**: the joining of two atoms in stable arrangement.

 Lewis Structures

 Bond Length

 Bond Angle

 Geometry

 Formal Charge

 And ……..
Topic I. Structure and Bonding

- **Formal Charge**

 Knowing the following key

 Valence electrons:

 Electron ownership:
Topic I. Structure and Bonding

- **Formal Charge**

 Knowing the following key #:

 - Valence electrons:

 - Electron ownership:

 Electron ownership: Unshared electrons + ½ of shared electrons

 Formal charge = # of valence electron – electron “owns”
Topic I. Structure and Bonding

- **Formal Charge**

\[
\begin{align*}
\text{Formal Charge of CH}_3
\end{align*}
\]

\[
\begin{align*}
\text{Formal Charge of CH}_2
\end{align*}
\]
Topic I. Structure and Bonding

- Formal Charge

\[\text{NO}_2\]
Topic I. Structure and Bonding

- **Octet rule**

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{Me} \\
\varepsilon &= 21
\end{align*}
\]

\[
\begin{align*}
\text{O} \\
\varepsilon &= 47
\end{align*}
\]
Degree of Unsaturation

\[\text{DOU} = \frac{\sum (v-2) + 2}{2} = \frac{\#C \times 2 - \#H - \#X + \#N + 2}{2} \]

\(C_7H_{12}O_2 \)

\(C_6H_5NO_2 \)
Degree of Unsaturation

\[
\text{DOU} = \frac{\sum (v-2) + 2}{2} = \frac{\#C \times 2 - \#H - \#X + \#N + 2}{2}
\]

\[\text{C}_6\text{H}_5\text{NO}_2\]
Resonance: Re-allocation of electrons

- Single resonance structure does not represent the structure of a molecule, only the hybrid/combination does.

- Resonance structures are not in equilibrium. They are the different formats of a same molecule.

- Resonance structures are not isomers.
Topic I. Structure and Bonding

- Resonance: Re-allocation of electrons
Topic I. Structure and Bonding

- **Bond length**
 - H-H: 0.74
 - H-F: 0.92
 - C-F: 1.33
 - C-H: 1.09
 - H-Cl: 1.27
 - C-Cl: 1.77
Topic I. Structure and Bonding

Bond strength and bond length (C-C)

<table>
<thead>
<tr>
<th>Bond</th>
<th>length (Å)</th>
<th>strength (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$-CH$_3$</td>
<td>1.53</td>
<td>88</td>
</tr>
<tr>
<td>CH$_2$=CH$_2$</td>
<td>1.34</td>
<td>152</td>
</tr>
<tr>
<td>CH≡CH</td>
<td>1.21</td>
<td>200</td>
</tr>
</tbody>
</table>
Topic I. Structure and Bonding

- Bond Angle
 - Linear 180°
 - Trigonal planar 120°
 - Tetrahedral 109.5°
Topic I. Structure and Bonding

- **Bond Angle**
 - Linear 180°
 - Trigonal planar 120°
 - Tetrahedral 109.5°
Topic I. Structure and Bonding

• Bond Angle
Topic I. Structure and Bonding

- Hybridization: SP3, SP2, SP

- s factor
Topic I. Structure and Bonding

- Bond strength and bond length (C-H)

<table>
<thead>
<tr>
<th>Bond</th>
<th>length (Å)</th>
<th>strength (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃-H</td>
<td>1.11</td>
<td>98</td>
</tr>
<tr>
<td>CH₂=CH-H</td>
<td>1.10</td>
<td>104</td>
</tr>
<tr>
<td>CH≡C-H</td>
<td>1.09</td>
<td>125</td>
</tr>
</tbody>
</table>
Topic I. Structure and Bonding

• Electronic donating and Electron Withdrawing group

(EDG vs EWG)
Topic I. Structure and Bonding

- Electronic donating and Electron Withdrawing group

 (EDG vs EWG)
Topic II. Curved arrow electron pushing

- Curved arrow notation for electron moving
Topic II. Curved arrow electron pushing

• How to draw curved arrow notation:

 Where to start: pair of electrons

 Where to go: how or something can move
Topic II. Curved arrow electron pushing

- How to draw curved arrow notation: Where to start and where to go!
Topic II. Curved arrow electron pushing

- How to draw curved arrow notation: *Where to start and where to go!*
Topic II. Curved arrow electron pushing

• How to draw curved arrow notation: Where to start and where to go!
Topic II. Curved arrow electron pushing

- How to draw curved arrow notation: Where to start and where to go!
Topic II. Curved arrow electron pushing

- How to draw curved arrow notation: Where to start and where to go!

\[
\begin{align*}
\text{H} & \quad \text{C} \longrightarrow \text{C} \\
\text{C} & \quad \text{CH}_2
\end{align*}
\]
Topic II. Curved arrow electron pushing

- How to draw curved arrow notation: Where to start and where to go!
Topic III. Acid and Base Chemistry

- Acid/Base reaction

\[\text{HA} \xleftrightarrow{\text{Keq}} \text{H}^+ + \text{A}^- \]
Topic III. Acid and Base Chemistry

- Acid/Base reaction

\[\text{HA}_1 + \text{A}_2^- \xrightarrow{\text{Keq}} \text{HA}_2 + \text{A}_1^- \]
Q: What is the Keq? What is ΔG?
Topic III. Acid and Base Chemistry

- Acid/Base reaction
Topic III. Acid and Base Chemistry

• Acid strength and pKa

Resonance effect and inductive effect

\[
\begin{align*}
&\text{H}_3\text{C-COOH} & &\text{HO} & &\text{H}_3\text{C-OH} \\
&\text{C} & &\text{OH} & &
\end{align*}
\]
Topic III. Acid and Base Chemistry

- Acid strength and pKa
Topic III. Acid and Base Chemistry

- Acid strength and pKa

Hybridization effect
Topic IV. Stereochemistry

• Isomers

Isomers: different compounds with the same molecular formula

Constitutional isomers

Stereoisomers

Diastereomers

Enantiomers
Topic IV. Stereochemistry

• **Isomers**

\[\text{CH}_3\text{CH=CHCH}_3 \]
Topic IV. Stereochemistry

• **Chiral and Achiral**

Chiral: a molecule that is not superimposable on its mirror
Topic IV. Stereochemistry

• Chiral and Achiral
Topic IV. Stereochemistry

• Chiral and Achiral
Topic IV. Stereochemistry

• Stereogenic Center

```
Br

H  Cl
H  F

H  Cl
H  F

H  Cl
H  F
```
Topic V. Others

• Newnam Projection

[Images of eclipsed and staggered conformations of a molecule]
• Chair conformation:
Topic V. Others

• Chair conformation:
Topic V. Others

• Four key types of reactions:

 SN1

 SN2

 E1

 E2
Topic V. Others

• Oxidation state: